Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 851
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biomed Pharmacother ; 173: 116426, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471274

RESUMO

In the field of cancer therapy, sesquiterpene lactones (SLs) derived from diverse Dicoma species demonstrate noteworthy bioactivity. However, the translation of their full therapeutic potential into clinical applications encounters significant challenges, primarily related to solubility, bioavailability, and precise drug targeting. Despite these obstacles, our comprehensive review introduces an innovative paradigm shift that integrates the inherent therapeutic properties of SLs with the principles of green nanotechnology. To overcome issues of solubility, bioavailability, and targeted drug delivery, eco-friendly strategies are proposed for synthesizing nanocarriers. Green nanotechnology has emerged as a focal point in addressing environmental and health concerns linked to conventional treatments. This progressive approach of green nanotechnology holds promise for the development of safe and sustainable nanomaterials, particularly in the field of drug delivery. This groundbreaking methodology signifies a pioneering advancement in the creation of novel and effective anticancer therapeutics. It holds substantial potential for transforming cancer treatment and advancing the landscape of natural product research.


Assuntos
Nanoestruturas , Neoplasias , Sesquiterpenos , Humanos , Neoplasias/tratamento farmacológico , Nanotecnologia/métodos , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Lactonas/uso terapêutico
2.
Clin Exp Pharmacol Physiol ; 51(4): e13847, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38382534

RESUMO

The use of all-trans retinoic acid and arsenic trioxide resulted in favourable therapeutic responses in standard-risk acute promyelocytic leukaemia (APL) patients. However, resistance to these agents has made treating the high-risk subgroup more problematic, and possible side effects limit their clinical dosages. Numerous studies have proven the cytotoxic properties of Gaillardin, one of the Inula oculus-christi-derived sesquiterpene lactones. Due to the adverse effects of arsenic trioxide on the high-risk subgroup of APL patients, we aimed to assess the cytotoxic effect of Gaillardin on HL-60 cells as a single or combined-form approach. The results of the trypan blue and MTT assays outlined the potent cytotoxic properties of Gaillardin. The flow cytometric analysis and the mRNA expression levels revealed that Gaillardin attenuated the proliferative capacity of HL-60 cells through cell cycle arrest and induced apoptosis via reactive oxygen species generation. Moreover, the results of synergistic experiments indicated that this sesquiterpene lactone sensitizes HL-60 cells to the cytotoxic effects of arsenic trioxide. Taken together, the findings of the present investigation highlighted the antileukemic characteristics of Gaillardin by inducing G1 cell cycle arrest and triggering apoptosis. Gaillardin acts as an antileukemic metabolite against HL-60 cells and this study provides new insight into treating APL patients, especially in the high-risk subgroup.


Assuntos
Antineoplásicos , Leucemia , Sesquiterpenos , Humanos , Trióxido de Arsênio/farmacologia , Células HL-60 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Lactonas/farmacologia , Lactonas/uso terapêutico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Leucemia/tratamento farmacológico , Apoptose , Óxidos/farmacologia , Óxidos/uso terapêutico
3.
Acta Pharmacol Sin ; 45(4): 803-814, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38172305

RESUMO

Overactivation of the NLRP3 inflammasomes induces production of pro-inflammatory cytokines and drives pathological processes. Pharmacological inhibition of NLRP3 is an explicit strategy for the treatment of inflammatory diseases. Thus far no drug specifically targeting NLRP3 has been approved by the FDA for clinical use. This study was aimed to discover novel NLRP3 inhibitors that could suppress NLRP3-mediated pyroptosis. We screened 95 natural products from our in-house library for their inhibitory activity on IL-1ß secretion in LPS + ATP-challenged BMDMs, found that Britannin exerted the most potent inhibitory effect with an IC50 value of 3.630 µM. We showed that Britannin (1, 5, 10 µM) dose-dependently inhibited secretion of the cleaved Caspase-1 (p20) and the mature IL-1ß, and suppressed NLRP3-mediated pyroptosis in both murine and human macrophages. We demonstrated that Britannin specifically inhibited the activation step of NLRP3 inflammasome in BMDMs via interrupting the assembly step, especially the interaction between NLRP3 and NEK7. We revealed that Britannin directly bound to NLRP3 NACHT domain at Arg335 and Gly271. Moreover, Britannin suppressed NLRP3 activation in an ATPase-independent way, suggesting it as a lead compound for design and development of novel NLRP3 inhibitors. In mouse models of MSU-induced gouty arthritis and LPS-induced acute lung injury (ALI), administration of Britannin (20 mg/kg, i.p.) significantly alleviated NLRP3-mediated inflammation; the therapeutic effects of Britannin were dismissed by NLRP3 knockout. In conclusion, Britannin is an effective natural NLRP3 inhibitor and a potential lead compound for the development of drugs targeting NLRP3.


Assuntos
Inflamassomos , Lactonas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sesquiterpenos , Animais , Humanos , Camundongos , Inflamassomos/agonistas , Interleucina-1beta/metabolismo , Lactonas/farmacologia , Lactonas/uso terapêutico , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico
4.
Int Immunopharmacol ; 124(Pt B): 110965, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37741124

RESUMO

Isolinderalactone is the main sesquiterpene lactone isolated from Lindera aggregata, a traditional Chinese medicine widely used to treat pain and inflammation. Although isolinderalactone has been demonstrated to possess anti-cancer effect, its anti-inflammatory activity and underlying mechanism has not been well characterized. Herein, isolinderalactone was able to significantly inhibit the production of NO and PGE2 by reducing the expressions of iNOS and COX2 in LPS-stimulated RAW264.7 macrophages and BMDMs, and decreased the mRNA levels of IL-1ß, IL-6, and TNF-α in LPS-induced RAW264.7 cells. In vivo, isolinderalactone effectively alleviated LPS-induced acute lung injury (ALI), which manifested as reduction in pulmonary inflammatory infiltration, myeloperoxidase activity, and production of PGE2, IL-1ß, IL-6, TNF-α, and malondialdehyde. Furthermore, isolinderalactone inhibited phosphorylation of IKKα/ß, phosphorylation and degradation of IκBα, and nuclear translocation of NF-κB p65, thereby blocking NF-κB pro-inflammatory pathway. Meanwhile, isolinderalactone reduced the intracellular ROS through promoting the activation of Nrf2-HMOX1 antioxidant axis. By using drug affinity responsive target stability assay and molecular docking, isolinderalactone was found to covalently interact with IKKα/ß and Keap1, which may contribute to its anti-inflammatory action. Additionally, a thiol donor ß-mercaptoethanol significantly abolished isolinderalactone-mediated anti-inflammatory action in vitro, indicating the crucial role of the unsaturated lactone of isolinderalactone on its anti-inflammatory effects. Taken together, isolinderalactone protected against LPS-induced ALI in mice, which may be associated with its inhibition of NF-κB pathway and activation of Nrf2 signaling in macrophages.


Assuntos
Lesão Pulmonar Aguda , Sesquiterpenos , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Anti-Inflamatórios/farmacologia , Quinase I-kappa B/metabolismo , Interleucina-6/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lactonas/farmacologia , Lactonas/uso terapêutico , Lactonas/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
5.
Eur J Pharmacol ; 955: 175917, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37473982

RESUMO

Secretory diarrhea caused by bacteria and viruses is usually accompanied by activation of the cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated Cl- channels (CaCCs) in the intestinal epithelium. Inhibition of CFTR and CaCCs activities significantly reduces fluid losses and intestinal motility in diarrheal diseases. For this reason, CFTR and CaCCs are potential targets of therapeutic drug screening. Here, we reported that the sesquiterpene lactones, alantolactone (AL) and isoalantolactone (iAL), significantly inhibited ATP and Eact-induced short-circuit currents in T84, HT-29 and Fischer rat thyroid (FRT) cells expressing transmembrane protein 16A (TMEM16A) in a concentration-dependent manner. AL and iAL also inhibited the CaCC-mediated short-circuit currents induced by carbachol in the mouse colons. Both compounds inhibited forskolin-induced currents in T84 cells but did not significantly affect mouse colons. In vivo studies indicated that AL and iAL attenuated gastrointestinal motility and decreased watery diarrhea in rotavirus-infected neonatal mice. Preliminary mechanism studies showed that AL and iAL inhibited CaCCs at least partially by inhibiting Ca2+ release and basolateral membrane K+ channels activity. These findings suggest a new pharmacological activity of sesquiterpene lactone compounds that might lead to the development of treatments for rotaviral secretory diarrhea.


Assuntos
Rotavirus , Sesquiterpenos , Ratos , Camundongos , Animais , Regulador de Condutância Transmembrana em Fibrose Cística , Diarreia/tratamento farmacológico , Diarreia/metabolismo , Canais de Cloreto/metabolismo , Mucosa Intestinal/metabolismo , Ratos Endogâmicos F344 , Lactonas/farmacologia , Lactonas/uso terapêutico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Sesquiterpenos/metabolismo , Cloretos/metabolismo
6.
Acta Pharmacol Sin ; 44(11): 2265-2281, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37344563

RESUMO

The majority of blood malignancies is incurable and has unforeseeable remitting-relapsing paths in response to different treatments. Cynaropicrin, a natural sesquiterpene lactone from the edible parts of the artichoke plant, has gained increased attention as a chemotherapeutic agent. In this study, we investigated the effects of cynaropicrin against multiple myeloma (MM) cells in vitro and assessed its in vivo effectiveness in a xenograft tumor zebrafish model. We showed that cynaropicrin exerted potent cytotoxicity against a panel of nine MM cell lines and two leukemia cell lines with AMO1 being the most sensitive cell line (IC50 = 1.8 ± 0.3 µM). Cynaropicrin (0.8, 1.9, 3.6 µM) dose-dependently reduced c-Myc expression and transcriptional activity in AMO1 cells that was associated with significant downregulation of STAT3, AKT, and ERK1/2. Cell cycle analysis showed that cynaropicrin treatment arrested AMO1 cells in the G2M phase along with an increase in the sub-G0G1 phase after 24 h. With prolonged treatment times, cells accumulated more in the sub-G0G1 phase, implying cell death. Using confocal microscopy, we revealed that cynaropicrin disrupted the microtubule network in U2OS cells stably expressing α-tubulin-GFP. Furthermore, we revealed that cynaropicrin promoted DNA damage in AMO1 cells leading to PAR polymer production by PARP1 hyperactivation, resulting in AIF translocation from the mitochondria to the nucleus and subsequently to a novel form of cell death, parthanatos. Finally, we demonstrated that cynaropicrin (5, 10 µM) significantly reduced tumor growth in a T-cell acute lymphoblastic leukemia (T-ALL) xenograft zebrafish model. Taken together, these results demonstrate that cynaropicrin causes potent inhibition of hematopoietic tumor cells in vitro and in vivo.


Assuntos
Mieloma Múltiplo , Parthanatos , Sesquiterpenos , Animais , Humanos , Tubulina (Proteína) , Peixe-Zebra/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Lactonas/farmacologia , Lactonas/uso terapêutico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Linhagem Celular Tumoral
7.
Sci Rep ; 13(1): 5190, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997627

RESUMO

TERT promoter mutations are a hallmark of glioblastoma (GBM). Accordingly, TERT and GABPB1, a subunit of the upstream mutant TERT promoter transcription factor GABP, are being considered as promising therapeutic targets in GBM. We recently reported that the expression of TERT or GABP1 modulates flux via the pentose phosphate pathway (PPP). Here, we investigated whether 13C magnetic resonance spectroscopy (MRS) of hyperpolarized (HP) δ- [1-13C]gluconolactone can serve to image the reduction in PPP flux following TERT or GABPB1 silencing. We investigated two different human GBM cell lines stably expressing shRNAs targeting TERT or GABPB1, as well as doxycycline-inducible shTERT or shGABPB1cells. MRS studies were performed on live cells and in vivo tumors, and dynamic sets of 13C MR spectra were acquired following injection of HP δ-[1-13C]gluconolactone. HP 6-phosphogluconolactone (6PG), the product of δ-[1-13C]gluconolactone via the PPP, was significantly reduced in TERT or GABPB1-silenced cells or tumors compared to controls in all our models. Furthermore, a positive correlation between TERT expression and 6PG levels was observed. Our data indicate that HP δ-[1-13C]gluconolactone, an imaging tool with translational potential, could serve to monitor TERT expression and its silencing with therapies that target either TERT or GABPB1 in mutant TERT promoter GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Telomerase , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Espectroscopia de Ressonância Magnética/métodos , Lactonas/uso terapêutico , Diagnóstico por Imagem , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Telomerase/genética , Telomerase/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/metabolismo
8.
Thromb Haemost ; 123(5): 510-521, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36588289

RESUMO

BACKGROUND: Vorapaxar has been shown to reduce cardiovascular mortality in post-myocardial infarction (MI) patients. Pharmacodynamic biomarker research related to protease-activated receptor-1 (PAR-1) inhibition with vorapaxar in humans has short follow-up (FU) duration and is mainly focused on platelets rather than endothelial cells. AIM: This article assesses systemic changes in endothelial-related biomarkers during vorapaxar treatment compared with placebo at 30 days' FU and beyond, in patients with coronary heart disease. METHODS: Local substudy patients in Norway were included consecutively from two randomized controlled trials; post-MI subjects from TRA2P-TIMI 50 and non-ST-segment elevation MI (NSTEMI) patients from TRACER. Aliquots of citrated blood were stored at -80°C. Angiopoietin-2, angiopoietin-like 4, vascular endothelial growth factor, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, von Willebrand factor, thrombomodulin, and plasminogen activator inhibitor-1 and -2 were measured at 1-month FU and at study completion (median 2.3 years for pooled patients). RESULTS: A total of 265 consecutive patients (age median 62.0, males 83%) were included. Biomarkers were available at both FUs in 221 subjects. In the total population, angiopoietin-2 increased in patients on vorapaxar as compared with placebo at 1-month FU (p = 0.034). Angiopoietin-like 4 increased (p = 0.028) and plasminogen activator inhibitor-2 decreased (p = 0.025) in favor of vorapaxar at final FU. In post-MI subjects, a short-term increase in E-selectin favoring vorapaxar was observed, p = 0.029. Also, a short-term increase in von Willebrand factor (p = 0.032) favoring vorapaxar was noted in NSTEMI patients. CONCLUSION: Significant endothelial biomarker changes during PAR-1 inhibition were observed in post-MI and NSTEMI patients.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Infarto do Miocárdio sem Supradesnível do Segmento ST , Masculino , Humanos , Receptor PAR-1/metabolismo , Doença da Artéria Coronariana/tratamento farmacológico , Angiopoietina-2 , Selectina E , Infarto do Miocárdio sem Supradesnível do Segmento ST/tratamento farmacológico , Fator de von Willebrand , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular , Infarto do Miocárdio/tratamento farmacológico , Biomarcadores , Inativadores de Plasminogênio , Lactonas/uso terapêutico , Inibidores da Agregação Plaquetária/uso terapêutico , Resultado do Tratamento
9.
Pharmacol Res ; 187: 106617, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535572

RESUMO

Retinal neovascularization, or pathological angiogenesis in the retina, is a leading cause of blindness in developed countries. Transforming growth factor-ß-activated kinase 1 (TAK1) is a mitogen-activated protein kinase kinase kinase (MAPKKK) activated by TGF-ß1 and other proinflammatory cytokines. TAK1 is also a key mediator of proinflammatory signals and plays an important role in maintaining vascular integrity upon proinflammatory cytokine stimulation such as TNFα. However, its role in pathological angiogenesis, particularly in retinal neovascularization, remains unclear. Here, we investigate the regulatory role of TAK1 in human endothelial cells responding to inflammatory stimuli and in a rat model of oxygen-induced retinopathy (OIR) featured retinal neovascularization. Using TAK1 knockout human endothelial cells that subjected to inflammatory stimuli, transcriptome analysis revealed that TAK1 is required for activation of NFκB signaling and mediates its downstream gene expression related to endothelial activation and angiogenesis. Moreover, pharmacological inhibition of TAK1 by 5Z-7-oxozeaenol attenuated angiogenic activities of endothelial cells. Transcriptome analysis also revealed enrichment of TAK1-mediated NFκB signaling pathway in the retina of OIR rats and retinal neovascular membrane from patients with proliferative diabetic retinopathy. Intravitreal injection of 5Z-7-oxozeaenol significantly reduced hypoxia-induced inflammation and microglial activation, thus attenuating aberrant retinal angiogenesis in OIR rats. Our data suggest that inhibition of TAK1 may have therapeutic potential for the treatment of retinal neovascular pathologies.


Assuntos
Doenças Retinianas , Neovascularização Retiniana , Animais , Humanos , Camundongos , Ratos , Citocinas/uso terapêutico , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Lactonas/uso terapêutico , Camundongos Endogâmicos C57BL , Neovascularização Patológica/patologia , NF-kappa B , Oxigênio , Doenças Retinianas/patologia , Neovascularização Retiniana/metabolismo
10.
Expert Opin Drug Discov ; 17(12): 1377-1405, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36373806

RESUMO

INTRODUCTION: Sesquiterpene lactones (SLs) are one of the most diverse bioactive secondary metabolites found in plants and exhibit a broad range of therapeutic properties . SLs have been showing promising potential in cancer clinical trials, and the molecular mechanisms underlying their anticancer potential are being uncovered. Recent evidence also points to a potential utility of SLs in cancer prevention. AREAS COVERED: This work evaluates SLs with promising anticancer potential based on cell, animal, and clinical models: Artemisinin, micheliolide, thapsigargin dehydrocostuslactone, arglabin, parthenolide, costunolide, deoxyelephantopin, alantolactone, isoalantolactone, atractylenolide 1, and xanthatin as well as their synthetic derivatives. We highlight actionable molecular targets and biological mechanisms underlying the anticancer therapeutic properties of SLs. This is complemented by a unique assessment of SL mechanisms of action that can be exploited in cancer prevention. We also provide insights into structure-activity and pharmacokinetic properties of SLs and their potential use in combination therapies. EXPERT OPINION: We extract seven major lessons learned and present evidence-based solutions that can circumvent some scientific limitations or logistic impediments in SL anticancer research. SLs continue to be at the forefront of cancer drug discovery and are worth a joint interdisciplinary effort in order to leverage their potential in cancer therapy and prevention.


Assuntos
Neoplasias , Sesquiterpenos , Animais , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Lactonas/farmacologia , Lactonas/uso terapêutico
11.
Artigo em Inglês | MEDLINE | ID: mdl-36244213

RESUMO

INTRODUCTION: Several studies have shown the antiproliferative effect of iodine and 5­hydroxy-6 iodo-eicosatrienoic delta lactone (IL-δ) on diverse tissues. It was demonstrated that molecular iodine (I2) and IL-δ, but not iodide (I-), exerts anti-neoplastic actions in different cancers. The underlying mechanism through which IL-δ inhibits tumor growth remains unclear. The aim of this study was to analyze the effect of IL-δ on tumor growth and angiogenesis in human HT29 colorectal cancer xenografts. METHODOLOGY AND RESULTS: HT29 cells were injected subcutaneously into the flanks of nude mice and IL-δ was i.p. injected at a dose of 15 µg three days a week. IL-δ treatment in HT29 xenografts showed time-dependent inhibition of tumor growth, decrease of mitosis and PCNA expression (p < 0.05), increase of P27 expression and Caspase 3 activity after 18 days of treatment (p < 0.05). To assess tumor Microvessel Densities (MVD), CD31 staining by immunohistochemistry was analyzed. IL-δ treatment decreased MVD by 17% and 30% after 18 and 30 days respectively (p < 0.05), as well as it decreased VEGF and VEGF-R2 expression (p < 0.05). Additionally, our findings demonstrated that IL-δ increased VEGF-R1 and Ang-1 mRNA levels (p < 0.01). CONCLUSION: The antitumor efficacy of IL-δ in vivo involves inhibition of cell proliferation as well as induction of apoptosis. IL-δ has also anti-angiogenic effect associated with VEGF and VEGF-R2 downregulation followed by Ang-1 and VEGF-R1 increased expression. High levels of Ang-1 would contribute to mature vessel stabilization and maintenance while VEGF-R1 increase would produce anti-proliferative effect on endothelial cells.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Iodo , Camundongos , Animais , Humanos , Células HT29 , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Nus , Xenoenxertos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Células Endoteliais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Neovascularização Patológica/tratamento farmacológico , Lactonas/uso terapêutico , Iodo/uso terapêutico , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C
12.
J Cachexia Sarcopenia Muscle ; 13(6): 2724-2739, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36085573

RESUMO

BACKGROUND: Atractylenolide I (AI) is a natural sesquiterpene lactone isolated from Atractylodes macrocephala Koidz, known as Baizhu in traditional Chinese medicine. AI has been found to ameliorate cancer cachexia in clinic cancer patients and in tumour-bearing mice. Here, we checked the influence of AI on biogenesis of IL-6 and extracellular vesicles (EVs) in cancer cachexia mice and then focused on studying mechanisms of AI in inhibiting the production of tumour-derived EVs, which contribute to the ameliorating effects of AI on cancer cachexia. METHODS: C26 tumour-bearing BALB/c mice were applied as animal model to examine the effects of AI (25 mg/kg) in attenuating cachexia symptoms, serum IL-6 and EVs levels. IL-6 and EVs secretion of C26 tumour cells treated with AI (0.31-5 µM) was further observed in vitro. The in vitro cultured C2C12 myotubes and 3T3-L1 mature adipocytes were used to check the potency of conditioned medium of C26 cells treated with AI (0.625-5 µM) in inducing muscle atrophy and lipolysis. The glycolysis potency of C26 cells under AI (0.31-5 µM) treatment was evaluated by measuring the extracellular acidification rate using Seahorse XFe96 Analyser. Levels of related signal proteins in both in vitro and in vivo experiments were examined using western blotting to study the possible mechanisms. STAT3 overexpression or knockout C26 cells were also used to confirm the effects of AI (5 µM). RESULTS: AI ameliorated cancer cachexia symptoms (P < 0.05), improved grip strength (P < 0.05) and decreased serum EVs (P < 0.05) and IL-6 (P < 0.05) levels of C26 tumour-bearing mice. AI directly inhibited EVs biogenesis (P < 0.001) and IL-6 secretion (P < 0.01) of cultured C26 cells. The potency of C26 medium in inducing C2C12 myotube atrophy (+59.54%, P < 0.001) and 3T3-L1 adipocyte lipolysis (+20.73%, P < 0.05) was significantly attenuated when C26 cells were treated with AI. AI treatment inhibited aerobic glycolysis and the pathway of STAT3/PKM2/SNAP23 in C26 cells. Furthermore, overexpression of STAT3 partly antagonized the effects of AI in suppressing STAT3/PKM2/SNAP23 pathway, EVs secretion, glycolysis and the potency of C26 medium in inducing muscle atrophy and lipolysis, whereas knockout of STAT3 enhanced the inhibitory effect of AI on these values. The inhibition of AI on STAT3/PKM2/SNAP23 pathway was also observed in C26 tumour tissues. CONCLUSIONS: AI ameliorates cancer cachexia by decreasing the production of IL-6 and EVs of tumour cells. The decreasing effects of AI on EVs biogenesis are based on its inhibition on STAT3/PKM2/SNAP23 pathway.


Assuntos
Vesículas Extracelulares , Neoplasias , Camundongos , Animais , Interleucina-6 , Linhagem Celular Tumoral , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Atrofia Muscular/patologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Lactonas/farmacologia , Lactonas/uso terapêutico , Neoplasias/patologia
13.
J Pharmacol Sci ; 150(2): 110-122, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055749

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases, and there are no effective drugs available so far. Lactucin and Lactucopicrin belong to sesquiterpene lactones and are extracted from Cichorium glandulosum Boiss. et Huet (CG) possesses multiple biopharmacological activities. However, the therapeutic effects of both Lactucin and Lactucopicrin on many diseases and their underlying mechanisms remain largely unknown. Here, we analyzed the both natural compounds hypolipidemic effects on FFA-induced HepG2 cells and their potential mechanisms based on transcriptomics and experimental tests. Our results indicated that Lactucin (10 µM) and Lactucopicrin (20 µM) remarkably reduced TG accumulation. Transcriptomics analysis identified 1960, 1645, and 1791 differentially expressed genes (DEGs) and obtained 611 and 635 specific genes in different comparisons, respectively. The enrichment analysis and experimental validations (RT-qPCR and Western Blot) showed that their hypolipidemic activities were most probably exerted via regulating numerous key DEGs involved in lipid metabolism. Taken together, both Lactucin and Lactucopicrin may represent potent hepatoprotective agents. Both of them exhibited therapeutic effects against liver diseases such as NAFLD by regulating multi-gene and proteins like HADHA, ADAM17, SQSTM1, and GBA and modulating multi-pathways like fatty acid oxidation metabolic signaling.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Sesquiterpenos , Células Hep G2 , Humanos , Lactonas/farmacologia , Lactonas/uso terapêutico , Metabolismo dos Lipídeos/genética , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Forbóis , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico
14.
Int Immunopharmacol ; 111: 109148, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988521

RESUMO

Acute lung injury (ALI) is a life-threatening disease characterized by severe inflammatory response, which has no pharmacological therapy in clinic. In this study, we found that eupalinolide B (EB), a sesquiterpene lactone isolated from Eupatorium lindleyanum, significantly ameliorated lipopolysaccharide (LPS)-induced ALI in mice, which manifests as reduction in lung injury score, activity of myeloperoxidase, and release of cytokines interleukin (IL)-1ß, IL-6, tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1). In RAW264.7 murine macrophages, EB effectively inhibited LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2) by down-regulating the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2), respectively. Mechanistically, EB not only blocked LPS-induced phosphorylation of inhibitor of nuclear factor kappa B kinase-α/ß (IKKα/ß), phosphorylation and degradation of inhibitor of nuclear factor-kappa B alpha (IκBα), and phosphorylation and nuclear translocation of nuclear factor-kappa B (NF-κB) P65, but also suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) in vitro or in vivo. Through cellular thermal shift assay and western blotting, EB was demonstrated to target and inactivate transforming growth factor ß activated kinase-1 (TAK1), which is an important upstream kinase for the activation of NF-κB and MAPKs pathways. Additionally, EB-mediated actions were markedly abolished by dithiothreitol in LPS-exposed RAW264.7 cells, suggesting a crucial role of the α,γ-unsaturated lactone for the anti-inflammatory activity of EB. In conclusion, our findings showed that EB could effectively alleviate ALI in mice, and attenuate inflammatory response by inhibiting the activation of TAK1, and TAK1-mediated activation of NF-κB and MAPKs cascades.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Lactonas/farmacologia , Lactonas/uso terapêutico , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Sesquiterpenos de Germacrano
15.
Comput Math Methods Med ; 2022: 3744837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898475

RESUMO

Applied science nowadays works on the isolation and application of biological macromolecules (BMM). These BMM are isolates from plants using different techniques and used as anticancer, antimicrobial, and anti-inflammatory drugs. Parthenolide (PLT) is one of the most important biological macromolecules and a naturally occurring sesquiterpene lactone that is isolated from a plant species Tanacetum parthenium (T. parthenium). The anti-cancer and anti-inflammatory effects of PTL isolated from T. parthenium were previously reported and summarized in detail. These biological activities make it a vital candidate for further researches and drugs development. As per the previously obtained findings, the sesquiterpene is very much known for some biological activities; therefore, the anti-cancer and anti-inflammatory activities of the sesquiterpene were critically reviewed. During the research process, PTL was found to be unstable in both acidic and basic conditions with low solubility, so structurally related compounds micheliolide (MCL) and Dimethylaminomicheliolide (DMAMCL) (a prodrug of MCL) were developed. In this article, we briefly review the therapeutic effects of PTL and its derivative DMAPT on inflammatory diseases and tumors, focusing on the current application of PTL in targeted therapy and combination therapy, together with anti-inflammatory and anti-tumor functions of MCL and DMAMCL. The uniqueness of this biological macromolecule is not to harm the normal cell but target the cancerous cells. Therefore, the current literature review might be helpful and useful for prospects based on the effects of MCL and DMAMCL on cancer.


Assuntos
Neoplasias , Sesquiterpenos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Lactonas/farmacologia , Lactonas/uso terapêutico , Neoplasias/tratamento farmacológico , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Sesquiterpenos de Guaiano
16.
Molecules ; 27(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35684434

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease which confers to patients a poor prognosis at short term. PDAC is the fourth leading cause of death among cancers in the Western world. The rate of new cases of pancreatic cancer (incidence) is 10 per 100,000 but present a 5-year survival of less than 10%, highlighting the poor prognosis of this pathology. Furthermore, 90% of advanced PDAC tumor present KRAS mutations impacting in several oncogenic signaling pathways, many of them associated with cell proliferation and tumor progression. Different combinations of chemotherapeutic agents have been tested over the years without an improvement of significance in its treatment. PDAC remains as one the more challenging biomedical topics thus far. The lack of a proper early diagnosis, the notable mortality statistics and the poor outcome with the available therapies urge the entire scientific community to find novel approaches against PDAC with real improvements in patients' survival and life quality. Natural compounds have played an important role in the process of discovery and development of new drugs. Among them, terpenoids, such as sesquiterpene lactones, stand out due to their biological activities and pharmacological potential as antitumor agents. In this review, we will describe the sesquiterpene lactones with in vitro and in vivo activity against pancreatic tumor cells. We will also discuss the mechanism of action of the compounds as well as the signaling pathways associated with their activity.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Sesquiterpenos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Lactonas/farmacologia , Lactonas/uso terapêutico , Neoplasias Pancreáticas/patologia , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Neoplasias Pancreáticas
17.
Eur J Pharmacol ; 925: 174989, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35490722

RESUMO

Scabertopin (SCP), an abundant germacrane-type sesquiterpene lactone (SLC) isolated from Elephantopus scaber, was selected as a reference compound for modification and evaluation as anticancer agents for non-small cell lung cancer (NSCLC) treatment. All derivatives (SCP-1-SCP-13) except for SCP-3 showed potential inhibitory effect (IC50 5.2-9.7 µM) against A549 cells. The most promising compound SCP-7 also showed good cytotoxic activity against another two NSCLC cell lines (H1299 and H460), with IC50 value of 4.4 and 8.9 µM, respectively. Furthermore, SCP-7 could induce apoptotic cell death that was associated with the increased reactive oxygen species (ROS) generation, the loss of mitochondrial membrane potential, Bcl-2 family proteins modulation, caspases-3 and PARP cleavage. In addition, SCP-7 also inhibited cell growth by increasing Bax expression and reducing the Ki-67 positive cells in vivo, but there were no obvious toxic and side effects on internal organs. Mechanistically, PharmMapper, molecular docking and Western blot analysis revealed that SCP-7 might interact with the epidermal growth factor receptor (EGFR) and inhibit its expression in lung cancer cells. Together, above results suggest further effective application of SCP-7 as a potential anti-tumor agent in the treatment of NSCLC.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Humanos , Lactonas/farmacologia , Lactonas/uso terapêutico , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos de Germacrano/farmacologia , Sesquiterpenos de Germacrano/uso terapêutico
18.
J Ethnopharmacol ; 295: 115401, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623504

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aucklandia lappa Decne. (ALDE) is the general name for Asteraceae plants Yunmuxiang, which has traditionally been proven to have the efficacy in relieving depression by regulating qi, alleviating cold by warming, attenuating pain in stomach and relieving diarrhea in intestines. Therefore, ALDE is always recommended as an herbal remedy for gastrointestinal dysfunction. AIM OF THE STUDY: The purpose of this study was to explore the therapeutic potential and mechanism of action of the sesquiterpene lactone-rich fraction (SLRF) of ALDE extracts in vivo and in vitro. MATERIALS AND METHODS: An aqueous extract (AE) and SLRF of ALDE were prepared and the contents of the main components were quantified by high performance liquid chromatography (HPLC). The therapeutic effects of the extracts were evaluated in C57BL/6 mice with dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). Body weight, disease activity index (DAI), and colon length were recorded, and histopathological changes in the colon were characterized using hematoxylin and eosin (H&E) staining. The in vitro anti-inflammatory activity and possible mechanisms of the two main sesquiterpene lactones in ALDE (costunolide and dehydrocostus lactone) were studied by quantitative proteomic analysis. Finally, based on bioinformatic analysis, we used polymerase chain reaction (PCR), immunofluorescence, and western blot experiments to verify the anti-inflammatory mechanism of the extracts in C57BL/6 mice. RESULTS: The SLRF of ALDE significantly improved the pathological symptoms and inflammatory pathology of UC, whereas the AE had a weak protective effect. In RAW264.7 cells stimulated with lipopolysaccharide (LPS), costunolide and dehydrocostus lactone significantly reduced the mRNA levels of interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α, suggesting that these two sesquiterpene lactones had strong anti-inflammatory activity. Quantitative proteomics results indicated that the anti-inflammatory mechanism of these lactones was associated with the NF-κB/MAPK and Nrf2-Hmox-1 pathways. These results were further validated in SLRF-treated mice. CONCLUSION: This study confirmed that the SLRF of ALDE exerted protective activity against UC by regulating the Nrf2-Hmox-1, NF-κB, and MAPK pathways.


Assuntos
Colite Ulcerativa , Saussurea , Sesquiterpenos , Animais , Anti-Inflamatórios/efeitos adversos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Lactonas/farmacologia , Lactonas/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Compostos Fitoquímicos/farmacologia , Proteômica , Sesquiterpenos/farmacologia , Sesquiterpenos/uso terapêutico , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
19.
Molecules ; 27(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35208993

RESUMO

Soursop (Annona muricata Lin.) is a plant belonging to the Annonaceae family that has been widely used globally as a traditional medicine for many diseases. In this review, we discuss the traditional use, chemical content, and pharmacological activities of A.muricata. From 49 research articles that were obtained from 1981 to 2021, A.muricata's activities were shown to include anticancer (25%), antiulcer (17%), antidiabetic (14%), antiprotozoal (10%), antidiarrhea (8%), antibacterial (8%), antiviral (8%), antihypertensive (6%), and wound healing (4%). Several biological activities and the general mechanisms underlying the effects of A.muricata have been tested both in vitro and in vivo. A.muricata contains chemicals such as acetogenins (annomuricins and annonacin), alkaloids (coreximine and reticuline), flavonoids (quercetin), and vitamins, which are predicted to be responsible for the biological activity of A.muricata.


Assuntos
Acetogeninas/uso terapêutico , Annona/química , Furanos/uso terapêutico , Lactonas/uso terapêutico , Extratos Vegetais/química , Folhas de Planta/química , Acetogeninas/química , Furanos/química , Humanos , Lactonas/química
20.
Oxid Med Cell Longev ; 2022: 3079577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154564

RESUMO

Andrographolide (ANDRO), a bitter diterpene lactone found in Andrographis paniculata (Burm.f.) Nees, possesses several biological effects such as antioxidant, anti-inflammatory, and organo-protective effects. Scientific reports suggest that it also has neuroprotective capacity in various test systems. The purpose of this review was to synthesize the neuropharmacological properties of ANDRO and highlight the molecular mechanisms of action that highlight these activities. A careful search was done in PubMed and Google Scholar databases using specific keywords. Findings suggest that ANDRO possess neuroprotective, analgesic, and antifatigue effects. Prominent effects were stated on neuro-inflammation, cerebral ischemia, Alzheimer's and Parkinson's diseases, multiple sclerosis, and brain cancer in mice and rats. Furthermore, ANDRO and its derivatives can enhance memory and learning capacity in experimental animals (rats) without causing any toxicity in the brain. Thus, ANDRO may be one of the most promising plant-based psychopharmacological lead compounds for new drug development.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Analgésicos/uso terapêutico , Andrographis paniculata/química , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Diterpenos/uso terapêutico , Lactonas/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Fitoterapia/métodos , Extratos Vegetais/uso terapêutico , Animais , Modelos Animais de Doenças , Camundongos , Ratos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA